
I would like to thank Professor Nora
Ayanian for welcoming me into the ACT
Lab and giving me this learning opportunity.
A big thank you to my mentor, Eric Ewing,
for explaining MAPF theory and guiding me
throughout this project. Finally, thank you to
Dr. Katie Mills, Monica Lopez, Cassandra
Jeon, and the rest of the SHINE team and
cohort for making this such an enriching
and fun-filled experience!

Multiagent Pathfinding (MAPF) aims to facilitate
efficient coordination between multiple mobile
robots in a finite closed environment. These
robot “agents” must navigate from their starting
locations to their respective goals using the
most efficient route that results in no conflicts
with other agents or obstacles.

Introduction Methods

Future Research

Acknowledgements

Objective & Impact of Research

MAPF and Trajectory Optimization with Drones
Ashna Khemani, ashna.khemani@gmail.com

ACT Lab
American High School, Class of 2022

USC Viterbi Department of Computer Science, SHINE 2021

The ACT Lab is developing algorithms for the
coordination of multiple robots to complete
automated tasks more efficiently. This would
help make such teams of robots more
commonplace in industry and possibly even in
everyday life.

Currently, a popular application of MAPF is in
warehousing, such as in Amazon’s Colorado
facility, where human workers load packages
onto robots, along with the corresponding
destination within the warehouse. Each of the
robots must find the shortest path to their
destinations while predicting and avoiding any
possible conflicts with other robots or
obstacles.1

Having an effective MAPF algorithm allows the
human workers to rely more on these robots,
reducing the physical and mental strain that
often comes with the repetitive and physically
demanding nature of such jobs.

Fig.	1: Simulation	
of	coordination	

between	robots	at	
an	Amazon	
warehouse
PC:	Amazon

Runtime Analysis

I analyzed the relationship between the number of agents and the algorithm runtime. I steadily increased
the number of agents from 2 to 10, ran CBS fifty times for each set, and recorded the average runtime for
each set (Fig. 6). I used two SciKitLearn modules, PolynomialFeatures and LinearRegression, to find a
line of best fit for this data (Fig. 7). A quadratic curve fit the data best, showing this is a Θ(n2) algorithm.

Fig.	7:	Scatter	plot	of	
data	from	Fig.	6	and	its	

line	of	best	fit.	
PC:	Ashna Khemani

Fig.	6:	Runtime	data	collected	
and	used	to	find	the	line	of	

best	fit
PC:	Ashna Khemani

• Reading and understanding scientific
literature

• Capturing, analyzing, and presenting
data

• Learning about the different systematic
approaches to MAPF

• Understanding derivation and methods
behind Bézier curves

• Effectively creating and using classes in
Python

• Using various data structures such as
arrays, sets, queues, stacks, and more

Skills Gained

• Before exploring MAPF, I first implemented Single-Agent Pathfinding (SAPF) algorithms like A* using
Python and illustrated the results with MatPlotLib (Fig. 2).

• Though A* is a SAPF algorithm, it can be extended to MAPF by combining it with the Conflict-Based
Search (CBS) algorithm. This fusion allows multiple agents to use A* to get to their respective goals
while coordinating to avoid conflicts with one another (Fig. 3).

• One challenge with the solution in Fig. 3 is the sharp turns. These would be difficult to execute,
especially if the agents are drones. Instead, it is much easier for drones to follow rounded curves,
which can be created using Bézier curves. This is essentially like “pulling” on the lines surrounding
these sharp corners in different directions to form a smooth curve.

• Implementation of Bézier curves to “round” the paths formed by CBS is shown in Fig. 4.
• These methods were then tested in a more complex instance, with a larger environment and more

agents (Fig. 5).

Fig.	2:	A*	working	for	a	
single	agent

PC:	Ashna Khemani

Fig.	3: CBS	allowing	
coordination	between	

four	agents
PC:	Ashna Khemani

Fig.	4: Using	Bézier
curves	to	make	
softer,	rounder	

turns.
PC:	Ashna Khemani

Fig.	5: Extending	these	
methods	to	a	larger	

environment	with	more	
agents

PC:	Ashna Khemani

1 Simon, Matt. “Your First Look Inside Amazon's Robot
Warehouse of Tomorrow.” Wired, Conde Nast, 5 June 2019

of Agents Avg. Runtime
(ms)

2 20.742

3 223.914

4 426.549

5 432.280

6 1838.574

7 2043.750

8 1844.476

9 3438.979

10 3644.972

• Simulating a more continuous space
that allows more direct trajectories

• Setting a “preference” for gentle turns
over 90º turns

• Implementing obstacle avoidance and
“narrow corridor” navigation

• Incorporating physical properties and
behaviors of real drones in the algorithm

• Adding efficiency metrics beyond path
length (i.e., fuel efficiency)

• Optimize growth of algorithm’s runtime,
which is currently Θ(n2)

