Shake it Off -Final Presentation

103-17: Ashna Khemani, Zach Rudder, Peyton Jenkins & David Kukoyi

Activity 1: Vibrating Cantilever

- Empirically calculate **frequency** and **damping ratio** of cantilevers of different lengths
 - 3 different lengths: **21.25"**, **16.5"** & **13"**.
- Collect acceleration data using Arduino \rightarrow graph and find peaks to find constants, graph representative equation

```
peak1 = (0.9749, 5.8)
peak2 = (1.0353, 5.09)
T_{elapsed} = peak2[0] - peak1[0]
n = 1 # periods between peaks
delta = (1/n) * np.log(peak1[1]/peak2[1])
                                              # logarithmic decrement
zeta = 1 / (np.sqrt(1 + (2*pi/delta)**2)) # damping ratio
w_d = 2*np.pi / T_elapsed
w_n = w_d / np.sqrt(1-zeta**2)
```

```
decay_fudge = 0.65
osc_fudge = 0.87
X = 23
phi = 0
def soln(t):
    return X*exp((-zeta*w n*t)*decay fudge) * cos(osc fudge*sqrt(1-zeta**2) * w n*t - phi)
```


13in bar Vertical Acceleration vs. Time

Activity 1 - Data

Trial No.	Length (m)	Frequency (Hz)	ζ (Damping Ratio)	"Fudge Factors"
1	21.25"	52.372	0.022	Osc: 0.9 Dec: 0.65
2	16.5"	54.2	0.035	Osc: 0.99 Dec: 0.47
3	13"	104.05	0.021	Osc: 0.87 Dec: 0.65

As length decreases

- frequency increases
- damping ratio remains about constant

Activity 2: Shaking Tower

- 3 test scenarios
 - **Fixed mass:** mass is fixed on threaded rod, pivot tightened fully. Changing initial amplitude
 - **Tuned mass:** mass fixed at 70mm on rod. Changing pivot screw tightness
 - Untuned mass: pivot screw loosened fully. Mass at arbitrary length. Changing initial amplitude
- Trying to increase damping ratio, perhaps larger period?

Activity 2: Shaking Tower

Fixed mass (fully tight pivot)

- Avg ζ: 0.03028
- Avg T: 0.5595 [s]

Fixed Mass Damper - a x vs t fixedmass 3 1.00 equation 0.75 0.50 -0.25-0.50-0.75-1.00

Tuned mass (adjusting damping) - best case

- Avg ζ: 0.078
- Avg T: 0.648 [s]

Untuned mass (fully loose pivot)

- Avg ζ: 0.0174
- Avg T: 0.5046 [s]
- erratic

- → Tuning damper gave best scenario overall
 - Double the damping ratio as the fixed mass
 - Slightly higher period than the fixed mass

Prediction

- Recreate test environment: fix mass at 70mm on threaded rod, medium tightness pivot screw
- Screw tightness medium-high should give us a damping ratio of 0.07
- Something like this graph

