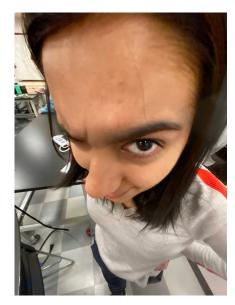
Final Portfolio

MEAM 247 2023C *Ashna Khemani*



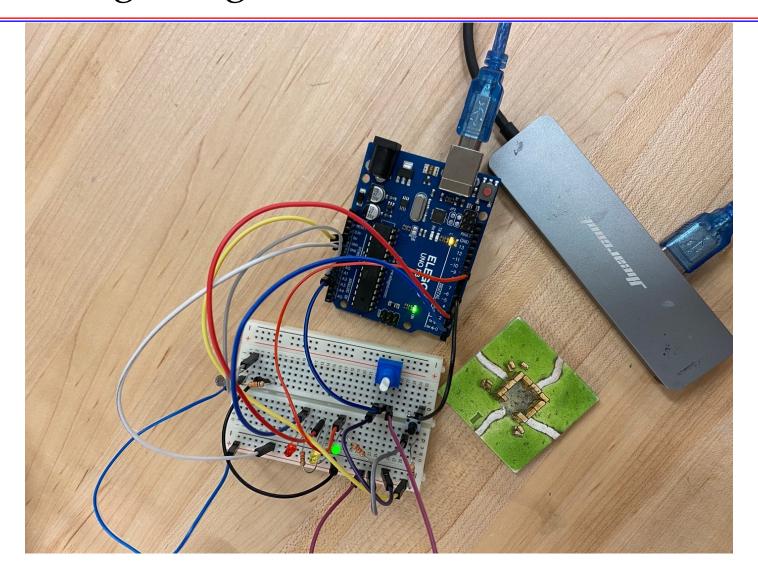

Figure 1: Ashna thinking very hard about drag over spheres in Lab 7

Figure 2: Ashna + friends featured on MEAM Instagram!

Lab1: Night Light (Photo & Code Screenshot)

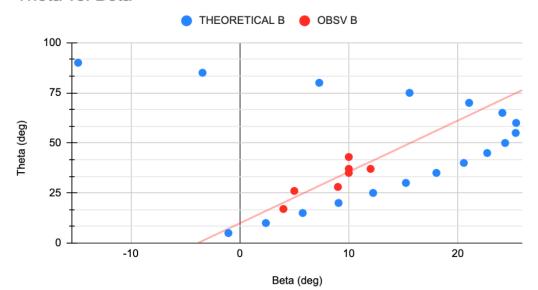
Lab1: Night Light (Photo & Code Screenshot)

```
if (buttonValue==HIGH){
const int photo = A0;
                                             void loop() {
                                                                                                                     digitalWrite(red, HIGH);
const int pot = A1;
                                                 int light = analogRead(photo);
                                                 int potValue = analogRead(pot);
                                                                                                                     digitalWrite(vellow, HIGH);
                                                 int potMapped = map(potValue, 0, 1024, 0, 500);
                                                                                                                     digitalWrite(green, HIGH);
                                                 int buttonValue = digitalRead(button);
const int red = 2;
                                                                                                                     if (!em_printed){
const int vellow = 5;
                                                                                                                          Serial.println("EMERGENCY");
                                                 int redThresh = 500 + potMapped;
const int green = 10;
                                                                                                                          em_printed = true;
                                                 int yellowThresh = redThresh + 100;
const int button = 7;
                                                 if (light<redThresh){ // red light</pre>
                                                    digitalWrite(red, HIGH);
                                                    digitalWrite(vellow, LOW);
                                                                                                                 else{
bool em_printed = false;
                                                    digitalWrite(green, LOW);
                                                                                                                     em_printed = false;
                                                    if(!red printed){
bool red_printed = false;
                                                       Serial.println("red");
bool yellow printed = false;
                                                       red_printed = true;
                                                       yellow_printed = false;
                                                                                                                 delay(250);
bool green printed = false;
                                                       green_printed = false;
                                                else if (light>redThresh && light<yellowThresh){ // yellow light</pre>
void setup() {
                                                    digitalWrite(yellow, HIGH);
     pinMode(photo, INPUT);
                                                    digitalWrite(red, LOW);
                                                    digitalWrite(green, LOW);
     pinMode(pot, INPUT);
                                                    if(!yellow_printed){
                                                       Serial.println("yellow");
     pinMode(button, INPUT);
                                                       red_printed = false;
                                                       yellow_printed = true;
                                                       green_printed = false;
     pinMode(red, OUTPUT);
     pinMode(yellow, OUTPUT);
                                                else if (light>yellowThresh){
```

digitalWrite(green, HIGH);

Serial.println("green");
red_printed = false;
yellow_printed = false;
green_printed = true;

digitalWrite(red, LOW);
digitalWrite(yellow, LOW);
if(!green_printed){


pinMode(green, OUTPUT);

Serial.begin(9600);

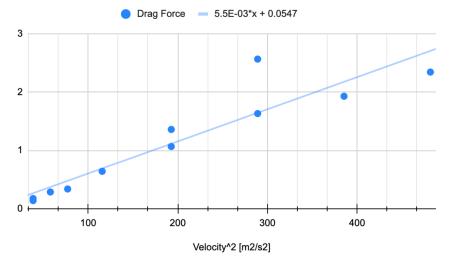
Lab2: Updated Fluid Graphs & Analysis

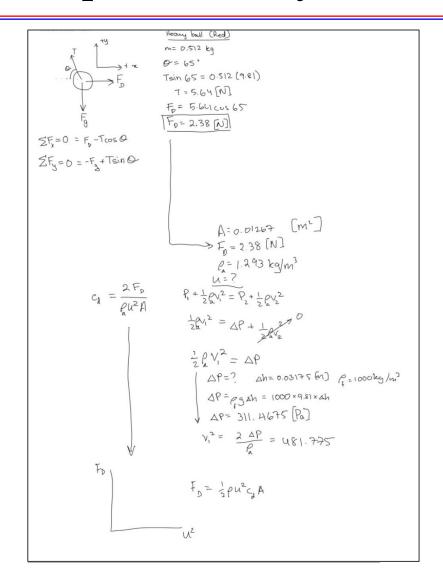
Fountain – observed data points (red) measured by Vidhya K.; empirical observations to find M in calculations (u and h) measured by Josh L.; table, graph, best fit line, all other calculations and work produced by me

Theta vs. Beta

tan Q =
$$\lambda \cot \beta \frac{M_1^2 \sin^2 \beta - 1}{M_1^2 (1 + \cos 2\beta) + 2}$$

 $Y = 1.4$ $M_1 = F = \frac{u}{190}$ $u = 2f + 1.16 s. = 0.526 m/s$
 $M_1 = \frac{0.526}{14 \cos 235}$ $m = \frac{0.526}{14 \cos 23$


AK: 2023C


Lab2: Updated Fluid Graphs & Analysis

Wind Tunnel – Calculations done independently. Table by Vidhya K., graph produced by me

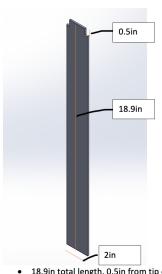
Drag Force vs. Velocity^2 for both spheres

ESTIMATING C_d w/ TRENDLING $f = 0.0055 \text{ V}^2$ $0.0055 = \frac{1}{2} l_{\text{air}} c_d A$ From earlier: $l_{\text{air}} = 1.293 \text{ kg/m}^3 A = 0.01267 \text{ (m}^2)$ $\Rightarrow c_d = \frac{2 \times 0.0655}{l_{\text{air}} \times A} = 0.6715$

Lab3: Fracture & Buckling: Photos, Tables, Analysis

Group 2: Ashna Khemani, Christine Meng, Jonas Ho, Justin Russell

			w	ood Dowel (Theoretical)					https://www.engineeringtoolbox.co	com/euler-column	-formula-d_1813.html
Length (in)	Diameter (in)	Length (m)	Diameter (m)	K	I (m^4)	Youngs Modulus (Pa)	Buckling Force (N)		Wood Dowel (Experin	nental)	
48	0.25	1.2192	0.00635	1	0.0000000007981138	8000000000	4.239402233		Experimental load (g)	Newtons	
									500	4.905	ý.
						Experimental and theor	etical buckling ford	es are very clos	e.		
						Experiment: push down a	along length of dowel	on top of scale u	ıntil dowel starts buckling.		
Metal (Experimental) - Group 2				Group 2 Metal (Theoretical)							
Mass (kg)			0.064		X sec area (m^2)	Google Ultimate Tensile s	stress (Pa)				
Length (in)			5.978		0.0000619385858	4.00E+08					
Width (in)			0.455								
Height (in)			0.211								
Max N			13374.405								
Max displacem	ent (mm)		2								
Material			Cast Iron			Known Max N and Max	N are pretty close (same OoM).			
Known Max N			2.48E+04			Experiment: put strip of m	netal in MTS machine	e. Pull it until it br	eaks.		
% Elongation a	t break		1.472165875								
Volume (m3)			9.40E-06								
Density (kg/m3))		6.81E+03								
Ultimate tensile	e stress		215930099.6								
Ultimate tensile	e stress (MPa)		215.9300996								



MEAM 247 : Final Portfolio AK : 2023C Page 5

Lab4: Suspension Bridge Analysis & Test Photo

Lab 4 Individual Assignment

Ashna Khemani - Tower Officer

- 18.9in total length, 0.5in from tip of cable holds to top of tower.
- Each tower will be 2x 1/8" MDF sheets glued together
- · 2in base width, 1.8in top width

Calculation for critical force:

$$F_{cr} = \frac{\pi^2 EI}{(KL)^2}$$

- E is modulus of elasticity. $E=0.58*10^8\left[\frac{lb}{ln^2}\right]$ for MDF according to this
- I is area moment of inertia

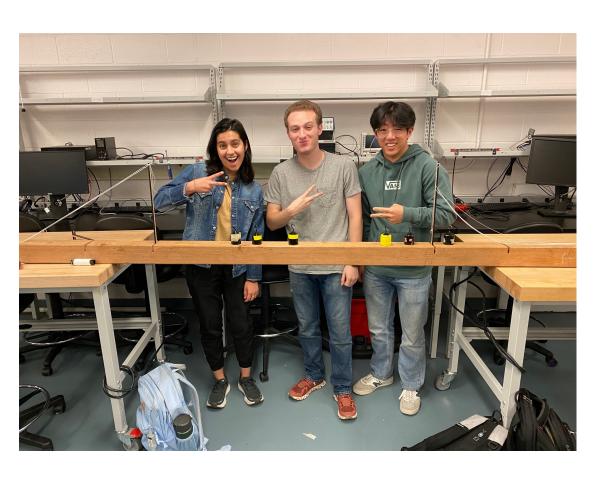
o For this rectangular base,
$$I = \frac{bh^3}{12}$$
; $b = 2[in], h = \frac{1}{4}[in]$

$$0 I = \frac{2*(\frac{1}{4})^3}{12} = 0.0026 [in^4]$$

- K = 2 for our support, which is fixed at the bottom and free at the top according to this
- L = 18.9 [in]

$$F_{cr} = \frac{\pi^2 (0.58 * 10^8)(0.0026)}{(2 * 18.9)^2} = 1043 [lb]$$

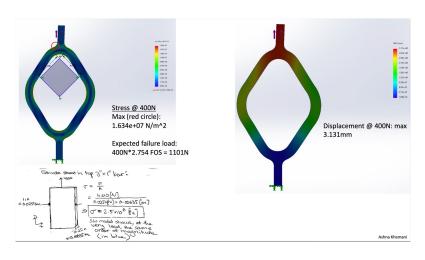
I'm a little suspicious of this. A person could probably break an 18.9in long piece of MDF with their bare hands, exerting less than ~1000 pounds of force. I wonder if the issue is the Young's modulus for MDF (0.58 * $10^8 \left[\frac{lb}{in^2}\right]$) that I found online.

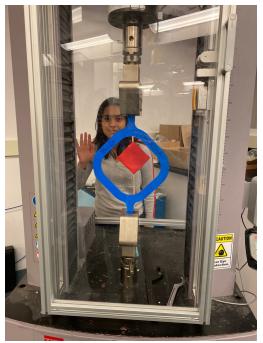

I'll have to do some more research into if such a large F_{cr} is reasonable. But if this is right, then this could definitely support the projected load of 40N: 40[N] < 1043[lb] = 4639.5[N]

But again, this seems a little fishy to me. 🗪

AK: 2023C

Lab4: Suspension Bridge Analysis & Test Photo

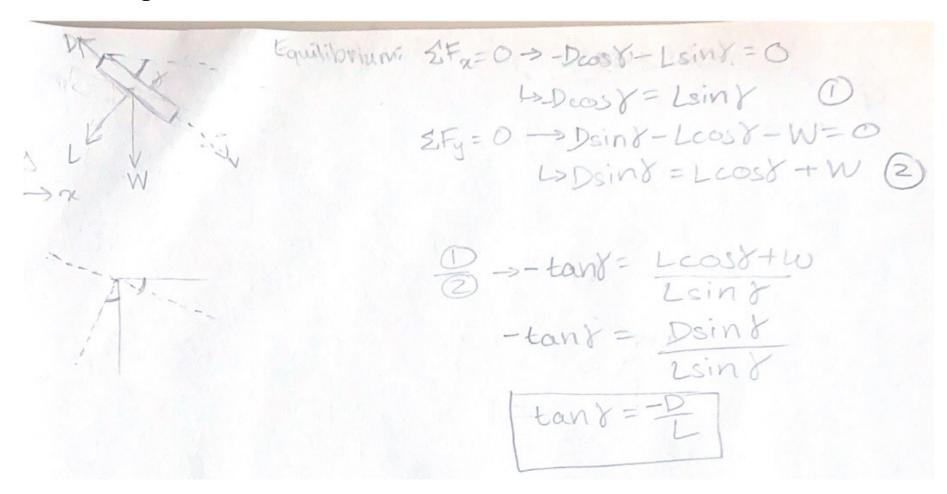

Almost worked but broke ©
We overoptimized cost at the expense of performance. Our towers didn't distribute tension over the cables evenly. So while our towers were intact, our cables snapped.


To improve, we'd rely less on the cable to hold everything together, and instead spend more money on the towers themselves. We might make a structure that has more depth along the length of the bridge, to avoid overbending while supporting more of the load.

AK: 2023C

Lab5: Tension Strap Final FEA & Test Photo

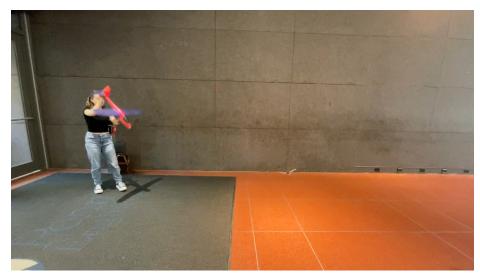
A wistful goodbye to my beloved Big Bertha



~1000[N] later...

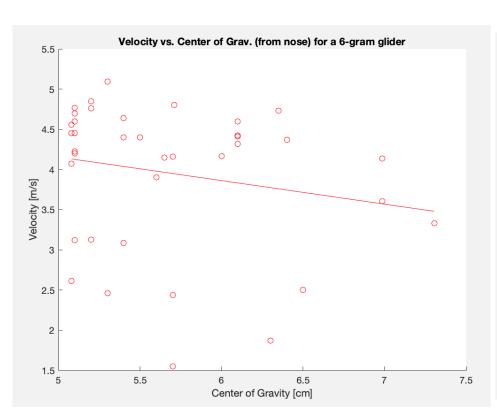
Lab6: Airplane Flight Test Media & Graph

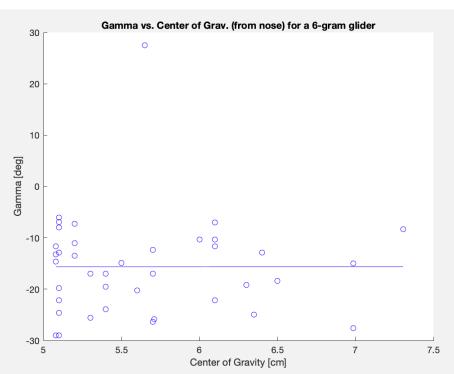
FBD + equation



Lab6: Airplane Flight Test Media & Graph

Flight Videos (with Kayla)





Lab6: Airplane Flight Test Media & Graph

Graphs (from 10:15 section class data)

Hard to find patterns; noisy data ⊗ Would need more stable flight throws.

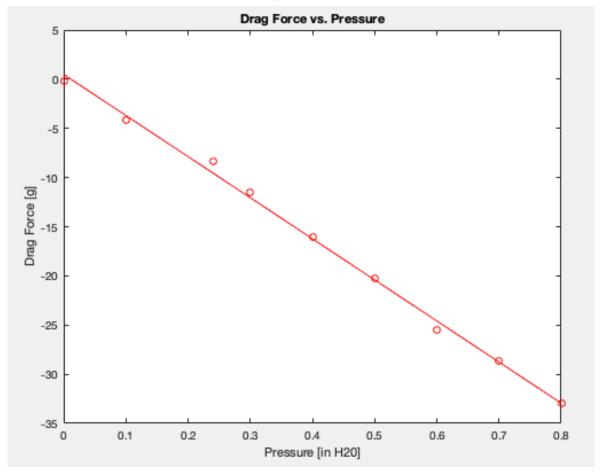
Lab7: Load Cell Explanation & Sphere Drag Graph

Load cell explanation

Load cell: bend beam → elongates and reduces cross section of the squiggly wire across the deforming surface

$$R = \frac{\rho L}{A}$$

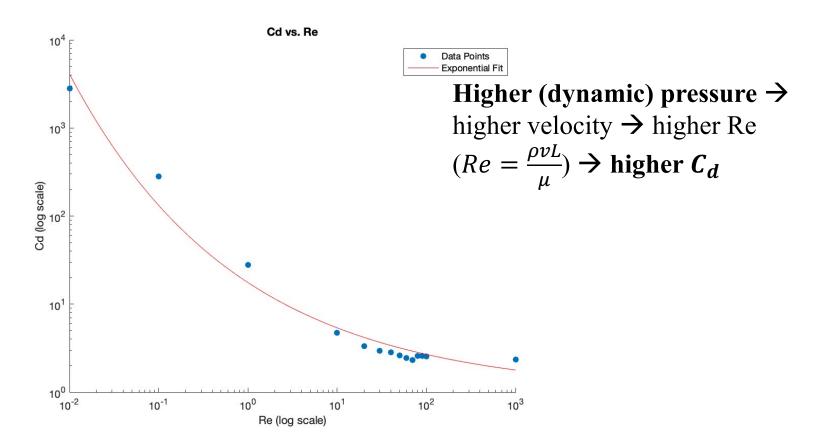
Measure the change in resistance (the change in voltage drop) across the wire \rightarrow can give you an idea of how much the wire deformed \rightarrow how much the beam bent



AK: 2023C

Lab7: Load Cell Explanation & Sphere Drag Graph

Sphere Drag Graph (data from 10:15 section)


	A	В
1	Pressure (inches of H2O)	Drag Force (g)
2	0	-0.15
3	0.1	-4.2
4	0.24	-8.35
5	0.3	-11.5
6	0.4	-16.1
7	0.5	-20.2
8	0.6	-25.5
9	0.7	-28.7
10	0.8	-33

Lab7: Load Cell Explanation & Sphere Drag Graph

Makes sense, compared to MEAM 2020 project (view here)

MEAM 247 : Final Portfolio

AK: 2023C

Looking Forward in Learning & Life

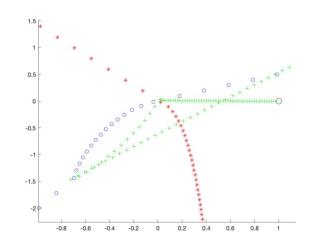
Stuff I'm Excited to Learn Next

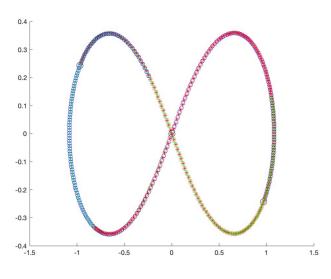
- How and why stuff flies
 - Maybe more about aerodynamics? Fluids? ???
- Data science, machine learning, AI... *insert more Silicon Valley-esque buzzwords, but genuinely*
- How To Robot and Why To Robot
 - Humanitarian causes/disaster relief
 - Safety in manufacturing, human + robot collaboration

Where I See Myself in 5 Years

- If money wasn't an issue: teaching high school engineering/math/sci., coaching robotics teams, generally helping kids find a love for hands-on engineering
- Maybe: MSE in Robotics? MBA? Both? Who knows.
- Hopefully: making robots and systems that are actually useful (space rovers, drones, legged bots). <u>Doing hands-on work.</u>
- But it would be cool to be a leader/specialist in a company with fresh and funky ideas...
 - Will it work? Who knows!
 - Will it be cool? Yeah!
 - Will it inspire others to get on board? I hope so!

MEAM 247 : Final Portfolio AK : 2023C Page 15


Interesting Stuff


Theater = fun

Three-Body Problem is literal chaos but kinda cool

AK: 2023C

